/* * COPYRIGHT * * pcb-rnd, interactive printed circuit board design * (this file is based on PCB, interactive printed circuit board design) * Copyright (C) 1994,1995,1996,2004,2006 Thomas Nau * * this file, thermal.c was written by and is * (C) Copyright 2006, harry eaton * * Adaptations for pcb-rnd: * Copyright (C) 2022 Tibor 'Igor2' Palinkas * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Contact: * Project page: http://repo.hu/projects/pcb-rnd * lead developer: http://repo.hu/projects/pcb-rnd/contact.html * mailing list: pcb-rnd (at) list.repo.hu (send "subscribe") * */ /* negative thermal finger polygons */ #include "config.h" #include #include #include "board.h" #include "polygon.h" #include #include #include "obj_pinvia_therm.h" static rnd_polyarea_t *pcb_pa_diag_line(rnd_coord_t X, rnd_coord_t Y, rnd_coord_t l, rnd_coord_t w, rnd_bool rt) { rnd_pline_t *c; rnd_vector_t v; rnd_coord_t x1, x2, y1, y2; if (rt) { x1 = (l - w) * M_SQRT1_2; x2 = (l + w) * M_SQRT1_2; y1 = x1; y2 = x2; } else { x2 = -(l - w) * M_SQRT1_2; x1 = -(l + w) * M_SQRT1_2; y1 = -x1; y2 = -x2; } v[0] = X + x1; v[1] = Y + y2; if ((c = rnd_poly_contour_new(v)) == NULL) return NULL; v[0] = X - x2; v[1] = Y - y1; rnd_poly_vertex_include(c->head->prev, rnd_poly_node_create(v)); v[0] = X - x1; v[1] = Y - y2; rnd_poly_vertex_include(c->head->prev, rnd_poly_node_create(v)); v[0] = X + x2; v[1] = Y + y1; rnd_poly_vertex_include(c->head->prev, rnd_poly_node_create(v)); return rnd_poly_from_contour(c); } /* ThermPoly returns a rnd_polyarea_t having all of the clearance that when * subtracted from the plane create the desired thermal fingers. * Usually this is 4 disjoint regions. * */ rnd_polyarea_t *ThermPoly_(pcb_board_t *pcb, rnd_coord_t cx, rnd_coord_t cy, rnd_coord_t thickness, rnd_coord_t clearance, rnd_cardinal_t style) { pcb_arc_t a; rnd_polyarea_t *pa, *pa1, *pa2, *arc; /* must be circular */ switch (style) { case 1: case 2: { rnd_polyarea_t *m; rnd_coord_t t = (thickness + clearance) / 2; rnd_coord_t w = 0.5 * pcb->ThermScale * clearance; pa = rnd_poly_from_circle(cx, cy, t); arc = rnd_poly_from_circle(cx, cy, thickness / 2); if (w < 1000) { w = 1000; rnd_message(RND_MSG_ERROR, "Thermal finger too thin around %$mm;%$mm; expect BROKEN THERMAL! Check your \"thermal scale\" setting (should be around 0.5)\n", cx, cy); } /* create a thin ring */ rnd_polyarea_boolean_free(pa, arc, &m, RND_PBO_SUB); /* fix me needs error checking */ if (style == 2) { /* t is the theoretically required length, but we use twice that * to avoid discretisation errors in our circle approximation. */ pa = rnd_poly_from_rect(cx - t * 2, cx + t * 2, cy - w, cy + w); rnd_polyarea_boolean_free(m, pa, &arc, RND_PBO_SUB); pa = rnd_poly_from_rect(cx - w, cx + w, cy - t * 2, cy + t * 2); } else { /* t is the theoretically required length, but we use twice that * to avoid discretisation errors in our circle approximation. */ pa = pcb_pa_diag_line(cx, cy, t * 2, w, rnd_true); rnd_polyarea_boolean_free(m, pa, &arc, RND_PBO_SUB); pa = pcb_pa_diag_line(cx, cy, t * 2, w, rnd_false); } rnd_polyarea_boolean_free(arc, pa, &m, RND_PBO_SUB); return m; } default: { double therm_scale = pcb->ThermScale; if (therm_scale < 0.01) { therm_scale = 0.01; rnd_message(RND_MSG_ERROR, "Thermal finger too thin around %$mm;%$mm; expect BROKEN THERMAL! Check your \"thermal scale\" setting (should be around 0.5)\n", cx, cy); } a.X = cx; a.Y = cy; a.Height = a.Width = thickness / 2 + clearance / 4; a.Thickness = 1; a.Clearance = clearance / 2; a.Flags = pcb_no_flags(); a.Delta = 90 - (a.Clearance * (1. + 2. * therm_scale) * 180) / (M_PI * a.Width); a.StartAngle = 90 - a.Delta / 2 + (style == 4 ? 0 : 45); /* Create union of 4 arcs, in two pairs: pairs of opposite arcs (within pa1 and pa2) won't ever intersect so they can be simply linked together using ->f and ->b fields of polyareas. But adjacent arcs may intersect if clearance is large so the two pairs need to be combined using the more expensive rnd_polyarea_boolean_free(). Test case: place a via in a poly, use the standard round thermal, start increasing the clearance value until the arcs get very close and merge. */ pa1 = pcb_poly_from_pcb_arc(&a, a.Clearance); if (!pa1) return NULL; a.StartAngle += 90; pa2 = pcb_poly_from_pcb_arc(&a, a.Clearance); if (!pa2) return NULL; a.StartAngle += 90; arc = pcb_poly_from_pcb_arc(&a, a.Clearance); if (!arc) return NULL; pa1->f = pa1->b = arc; arc->f = arc->b = pa1; a.StartAngle += 90; arc = pcb_poly_from_pcb_arc(&a, a.Clearance); if (!arc) return NULL; pa2->f = pa2->b = arc; arc->f = arc->b = pa2; pa = NULL; rnd_polyarea_boolean_free(pa1, pa2, &pa, RND_PBO_UNITE); return pa; } } }